This paper proposes a novel method that exploits multiple resources to improve statistical machine translation (SMT) based paraphrasing. In detail, a phrasal paraphrase table and a feature function are derived from each resource, which are then combined in a log-linear SMT model for sentence-level paraphrase generation. Experimental results show that the SMT-based paraphrasing model can be enhanced using multiple resources. The phrase-level and sentence-level precision of the generated paraphrases are above 60% and 55%, respectively. In addition, the contribution of each resource is evaluated, which indicates that all the exploited resources are useful for generating paraphrases of high quality.