We present an unsupervised, nonparametric Bayesian approach to coreference resolution which models both global entity identity across a corpus as well as the sequential anaphoric structure within each document. While most existing coreference work is driven by pairwise decisions, our model is fully generative, producing each mention from a combination of global entity properties and local attentional state. Despite being unsupervised, our system achieves a 70.3 MUC F1 measure on the MUC-6 test set, broadly in the range of some recent supervised results.