Sciweavers

AAAI
2010

A Bayesian Nonparametric Approach to Modeling Mobility Patterns

14 years 2 months ago
A Bayesian Nonparametric Approach to Modeling Mobility Patterns
Constructing models of mobile agents can be difficult without domain-specific knowledge. Parametric models flexible enough to capture all mobility patterns that an expert believes are possible are often large, requiring a great deal of training data. In contrast, nonparametric models are extremely flexible and can generalize well with relatively little training data. We propose modeling the mobility patterns of moving agents as a mixture of Gaussian processes (GP) with a Dirichlet process (DP) prior over mixture weights. The GP provides a flexible representation for each individual mobility pattern, while the DP assigns observed trajectories to particular mobility patterns. Both the GPs and the DP adjust the model's complexity based on available data, implicitly avoiding issues of over-fitting or under-fitting. We apply our model to a helicopter-based tracking task, where the mobility patterns of the tracked agents--cars--are learned from real data collected from taxis in the gre...
Joshua Mason Joseph, Finale Doshi-Velez, Nicholas
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2010
Where AAAI
Authors Joshua Mason Joseph, Finale Doshi-Velez, Nicholas Roy
Comments (0)