In this work we present in-network techniques to improve the efficiency of spatial aggregate queries. Such queries are very common in a sensornet setting, demanding more targeted techniques for their handling. Our approach constructs and maintains multi-resolution cube hierarchies inside the network, which can be constructed in a distributed fashion. In case of failures, recovery can also be performed with in-network decisions. In this paper we demonstrate how innetwork cube hierarchies can be used to summarize sensor data, and how they can be exploited to improve the efficiency of spatial aggregate queries. We show that query plans over our cube summaries can be computed in polynomial time, and we present a PTIME algorithm that selects the minimum number of data requests that can compute the answer to a spatial query. We further extend our algorithm to handle optimization over multiple queries, which can also be done in polynomial time. We discuss enriching cube hierarchies with extra...
Alexandra Meliou, Carlos Guestrin, Joseph M. Helle