by the abstracting, focusing and explanatory qualities of diagram drawing in art, in this paper we propose a novel seeding strategy to generate representative and illustrative streamlines in 2D vector fields to enforce visual clarity and evidence. A particular focus of our algorithm is to depict the underlying flow patterns effectively and succinctly with a minimum set of streamlines. To achieve this goal, 2D distance fields are generated to encode the distances from each grid point in the field to the nearby streamlines. A local metric is derived to measure the dissimilarity between the vectors from the original field and an approximate field computed from the distance fields. A global metric is used to measure the dissimilarity between streamlines based on the local errors to decide whether to drop a new seed at a local point. This process is iterated to generate streamlines until no more streamlines can be found that are dissimilar to the existing ones. We present examples of image...