Topic models have been studied extensively in the context of monolingual corpora. Though there are some attempts to mine topical structure from cross-lingual corpora, they require clues about document alignments. In this paper we present a generative model called JointLDA which uses a bilingual dictionary to mine multilingual topics from an unaligned corpus. Experiments conducted on different data sets confirm our conjecture that jointly modeling the cross-lingual corpora offers several advantages compared to individual monolingual models. Since the JointLDA model merges related topics in different languages into a single multilingual topic: a) it can fit the data with relatively fewer topics. b) it has the ability to predict related words from a language different than that of the given document. In fact it has better predictive power compared to the bag-of-word based translation model leaving the possibility for JointLDA to be preferred over bag-of-word model for cross-lingual IR app...