Medical imaging typically requires the reconstruction of a limited region of interest (ROI) to obtain a high resolution image of the anatomy of interest. Although targeted reconstruction is straightforward for analytical reconstruction methods, it is more complicated for statistical iterative techniques, which must reconstruct all objects in the field of view (FOV) to account for all sources of attenuation along the ray paths from x-ray source to detector. A brute force approach would require the reconstruction of the full field of view in highresolution, but with prohibitive computational cost. In this paper, we propose a multi-resolution approach to accelerate targeted iterative reconstruction using the non-homogeneous ICD (NH-ICD) algorithm. NH-ICD aims at speeding up convergence of the coordinate descent algorithm by selecting preferentially those voxels most in need of updating. To further optimize ROI reconstruction, we use a multi-resolution approach which combines three separa...
Zhou Yu, Jean-Baptiste Thibault, Charles A. Bouman