Sciweavers
Explore
Publications
Books
Software
Tutorials
Presentations
Lectures Notes
Datasets
Labs
Conferences
Community
Upcoming
Conferences
Top Ranked Papers
Most Viewed Conferences
Conferences by Acronym
Conferences by Subject
Conferences by Year
Tools
Sci2ools
International Keyboard
Graphical Social Symbols
CSS3 Style Generator
OCR
Web Page to Image
Web Page to PDF
Merge PDF
Split PDF
Latex Equation Editor
Extract Images from PDF
Convert JPEG to PS
Convert Latex to Word
Convert Word to PDF
Image Converter
PDF Converter
Community
Sciweavers
About
Terms of Use
Privacy Policy
Cookies
Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools
24
click to vote
DAGSTUHL
2008
favorite
Email
discuss
report
89
views
Software Engineering
»
more
DAGSTUHL 2008
»
Distributed parameter and state estimation in a network of sensors
14 years 10 days ago
Download
www.dagstuhl.de
Michel Kieffer
Real-time Traffic
DAGSTUHL 2008
|
Software Engineering
|
claim paper
Related Content
»
Distributed BoundedError Parameter and State Estimation in Networks of Sensors
»
Distributed and Recursive Parameter Estimation in Parametrized Linear StateSpace Models
»
Distributed parameter estimation with selective cooperation
»
Convergence of a distributed parameter estimator for sensor networks with local averaging ...
»
Distributed Parameter Estimation in Sensor Networks Nonlinear Observation Models and Imper...
»
Timespacesequential algorithms for distributed Bayesian state estimation in serial sensor ...
»
A mixed timescale algorithm for distributed parameter estimation Nonlinear observation mo...
»
Guaranteed robust distributed estimation in a network of sensors
»
Particle filter adaptation for distributed sensors via set membership
more »
Post Info
More Details (n/a)
Added
29 Oct 2010
Updated
29 Oct 2010
Type
Conference
Year
2008
Where
DAGSTUHL
Authors
Michel Kieffer
Comments
(0)
Researcher Info
Software Engineering Study Group
Computer Vision