We investigate Arabic Context Free Grammar parsing with dependency annotation comparing lexicalised and unlexicalised parsers. We study how morphosyntactic as well as function tag information percolation in the form of grammar transforms (Johnson, 1998, Kulick et al., 2006) affects the performance of a parser and helps dependency assignment. We focus on the three most frequent functional tags in the Arabic Penn Treebank: subjects, direct objects and predicates . We merge these functional tags with their phrasal categories and (where appropriate) percolate case information to the non-terminal (POS) category to train the parsers. We then automatically enrich the output of these parsers with full dependency information in order to annotate trees with Lexical Functional Grammar (LFG) f-structure equations with produce f-structures, i.e. attribute-value matrices approximating to basic predicate-argument-adjunct structure representations. We present a series of experiments evaluating how we...