Shallow semantic parsing, the automatic identification and labeling of sentential constituents, has recently received much attention. Our work examines whether semantic role information is beneficial to question answering. We introduce a general framework for answer extraction which exploits semantic role annotations in the FrameNet paradigm. We view semantic role assignment as an optimization problem in a bipartite graph and answer extraction as an instance of graph matching. Experimental results on the TREC datasets demonstrate improvements over state-of-the-art models.