This paper presents a large-scale system for the recognition and semantic disambiguation of named entities based on information extracted from a large encyclopedic collection and Web search results. It describes in detail the disambiguation paradigm employed and the information extraction process from Wikipedia. Through a process of maximizing the agreement between the contextual information extracted from Wikipedia and the context of a document, as well as the agreement among the category tags associated with the candidate entities, the implemented system shows high disambiguation accuracy on both news stories and Wikipedia articles.