Clinical texts contain a large amount of information. Some of this information is embedded in contexts where e.g. a patient status is reasoned about, which may lead to a considerable amount of statements that indicate uncertainty and speculation. We believe that distinguishing such instances from factual statements will be very beneficial for automatic information extraction. We have annotated a subset of the Stockholm Electronic Patient Record Corpus for certain and uncertain expressions as well as speculative and negation keywords, with the purpose of creating a resource for the development of automatic detection of speculative language in Swedish clinical text. We have analyzed the results from the initial annotation trial by means of pairwise Inter-Annotator Agreement (IAA) measured with F-score. Our main findings are that IAA results for certain expressions and negations are very high, but for uncertain expressions and speculative keywords results are less encouraging. These inst...