The definition of lexical semantic similarity measures has been the subject of lots of works for many years. In this article, we focus more specifically on distributional semantic similarity measures. Although several evaluations of this kind of measures were already achieved for determining if they actually catch semantic relatedness, it is still difficult to determine if a measure that performs well in an evaluation framework can be applied more widely with the same success. In the work we present here, we first select a semantic similarity measure by testing a large set of such measures against the WordNet-based Synonymy Test, an extended TOEFL test proposed in (Freitag et al., 2005), and we show that its accuracy is comparable to the accuracy of the best state of the art measures while it has less demanding requirements. Then, we apply this measure for extracting automatically synonyms from a corpus and we evaluate the relevance of this process against two reference resources, Wor...