Adaptive binarization is an important first step in many document analysis and OCR processes. This paper describes a fast adaptive binarization algorithm that yields the same quality of binarization as the Sauvola method,1 but runs in time close to that of global thresholding methods (like Otsu's method2 ), independent of the window size. The algorithm combines the statistical constraints of Sauvola's method with integral images.3 Testing on the UW-1 dataset demonstrates a 20-fold speedup compared to the original Sauvola algorithm.
Faisal Shafait, Daniel Keysers, Thomas M. Breuel