Sciweavers

ESANN
2007

Mixtures of robust probabilistic principal component analyzers

14 years 2 months ago
Mixtures of robust probabilistic principal component analyzers
Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models. Each mixture component is specifically designed to extract the local principal orientations in the data. An important issue with this generative model is its sensitivity to data lying off the low-dimensional manifold. In order to address this problem, the mixtures of robust probabilistic principal component analyzers are introduced. They take care of atypical points by means of a long tail distribution, the Student-t. It is shown that the resulting mixture model is an extension of the mixture of Gaussians, suitable for both robust clustering and dimensionality reduction. Finally, we briefly discuss how to construct a robust version of the closely related mixture of factor analyzers. r 2008 Elsevier B.V. All rights reserved.
Cédric Archambeau, Nicolas Delannay, Michel
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2007
Where ESANN
Authors Cédric Archambeau, Nicolas Delannay, Michel Verleysen
Comments (0)