Networks are a shared resource connecting critical IT infrastructure, and the general practice is to always leave them on. Yet, meaningful energy savings can result from improving a network's ability to scale up and down, as traffic demands ebb and flow. We present ElasticTree, a network-wide power1 manager, which dynamically adjusts the set of active network elements -- links and switches -- to satisfy changing data center traffic loads. We first compare multiple strategies for finding minimum-power network subsets across a range of traffic patterns. We implement and analyze ElasticTree on a prototype testbed built with production OpenFlow switches from three network vendors. Further, we examine the trade-offs between energy efficiency, performance and robustness, with real traces from a production e-commerce website. Our results demonstrate that for data center workloads, ElasticTree can save up to 50% of network energy, while maintaining the ability to handle traffic surges. O...