We describe an approach for acquiring the domain-specific dialog knowledge required to configure a task-oriented dialog system that uses human-human interaction data. The key aspects of this problem are the design of a dialog information representation and a learning approach that supports capture of domain information from in-domain dialogs. To represent a dialog for a learning purpose, we based our representation, the form-based dialog structure representation, on an observable structure. We show that this representation is sufficient for modeling phenomena that occur regularly in several dissimilar taskoriented domains, including informationaccess and problem-solving. With the goal of ultimately reducing human annotation effort, we examine the use of unsupervised learning techniques in acquiring the components of the form-based representation (i.e. task, subtask, and concept). These techniques include statistical word clustering based on mutual information and Kullback-Liebler dist...
Ananlada Chotimongkol, Alexander I. Rudnicky