Discovering relations among Named Entities (NEs) from large corpora is both a challenging, as well as useful task in the domain of Natural Language Processing, with applications in Information Retrieval (IR), Summarization (SUM), Question Answering (QA) and Textual Entailment (TE). The work we present resulted from the attempt to solve practical issues we were confronted with while building systems for the tasks of Textual Entailment Recognition and Question Answering, respectively. The approach consists in applying grammar induced extraction patterns on a large corpus