Sciweavers

NIPS
2008

Generative versus discriminative training of RBMs for classification of fMRI images

14 years 29 days ago
Generative versus discriminative training of RBMs for classification of fMRI images
Neuroimaging datasets often have a very large number of voxels and a very small number of training cases, which means that overfitting of models for this data can become a very serious problem. Working with a set of fMRI images from a study on stroke recovery, we consider a classification task for which logistic regression performs poorly, even when L1- or L2- regularized. We show that much better discrimination can be achieved by fitting a generative model to each separate condition and then seeing which model is most likely to have generated the data. We compare discriminative training of exactly the same set of models, and we also consider convex blends of generative and discriminative training.
Tanya Schmah, Geoffrey E. Hinton, Richard S. Zemel
Added 29 Oct 2010
Updated 29 Oct 2010
Type Conference
Year 2008
Where NIPS
Authors Tanya Schmah, Geoffrey E. Hinton, Richard S. Zemel, Steven L. Small, Stephen C. Strother
Comments (0)