We study the Master Equality Polyhedron (MEP) which generalizes the Master Cyclic Group Polyhedron and the Master Knapsack Polyhedron. We present an explicit characterization of the polar of the nontrivial facet-dening inequalities for MEP. This result generalizes similar results for the Master Cyclic Group Polyhedron by Gomory [9] and for the Master Knapsack Polyhedron by Araoz [1]. Furthermore, this characterization also gives a polynomial time algorithm for separating an arbitrary point from MEP. We describe how facet-dening inequalities for the Master Cyclic Group Polyhedron can be lifted to obtain facet-dening inequalities for the MEP, and also present facet-dening inequalities for MEP that cannot be obtained in such a way. Finally, we study the mixed-integer extension of MEP and present an interpolation theorem that produces valid inequalities for general mixed integer programming problems using facets of MEP.