We show how improved sequences for magnetic resonance imaging can be found through optimization of Bayesian design scores. Combining approximate Bayesian inference and natural image statistics with high-performance numerical computation, we propose the first Bayesian experimental design framework for this problem of high relevance to clinical and brain research. Our solution requires large-scale approximate inference for dense, non-Gaussian models. We propose a novel scalable variational inference algorithm, and show how powerful methods of numerical mathematics can be modified to compute primitives in our framework. Our approach is evaluated on raw data from a 3T MR scanner.
Matthias W. Seeger, Hannes Nickisch, Rolf Pohmann,