Temporal constraints play a fundamental role in clinical guidelines. For example, temporal indeterminacy, constraints about duration, delays between actions and periodic repetitions of actions are essential in order to cope with clinical therapies. This paper proposes a computer-based approach in order to deal with temporal constraints in clinical guidelines. Specifically, it provides the possibility to represent such constraints and reason with them (i.e., perform inferences in the form of constraint propagation). We first propose a temporal representation formalism and two constraint propagation algorithms operating on it, and then we show how they can be exploited in order to provide clinical guideline systems with different temporal facilities. Our approach offers several advantages: for example, during the guideline acquisition phase, it enables to represent temporal constraints and to check their consistency; during the execution phase, it allows the physician to check the consi...