Maximum entropy analysis of binary variables provides an elegant way for studying the role of pairwise correlations in neural populations. Unfortunately, these approaches suffer from their poor scalability to high dimensions. In sensory coding, however, high-dimensional data is ubiquitous. Here, we introduce a new approach using a near-maximum entropy model, that makes this type of analysis feasible for very high-dimensional data—the model parameters can be derived in closed form and sampling is easy. Therefore, our NearMaxEnt approach can serve as a tool for testing predictions from a pairwise maximum entropy model not only for low-dimensional marginals, but also for high dimensional measurements of more than thousand units. We demonstrate its usefulness by studying natural images with dichotomized pixel intensities. Our results indicate that the statistics of such higher-dimensional measurements exhibit additional structure that are not predicted by pairwise correlations, despite ...