In this paper we consider the orienteering problem in undirected and directed graphs and obtain improved approximation algorithms. The point to point-orienteering-problem is the following: Given an edge-weighted graph G = (V, E) (directed or undirected), two nodes s, t V and a budget B, find an s-t walk in G of total length at most B that maximizes the number of distinct nodes visited by the walk. This problem is closely related to tour problems such as TSP as well as network design problems such as k-MST. Our main results are the following.