Sciweavers

NIPS
2007

An online Hebbian learning rule that performs Independent Component Analysis

14 years 1 months ago
An online Hebbian learning rule that performs Independent Component Analysis
Independent component analysis (ICA) is a powerful method to decouple signals. Most of the algorithms performing ICA do not consider the temporal correlations of the signal, but only higher moments of its amplitude distribution. Moreover, they require some preprocessing of the data (whitening) so as to remove second order correlations. In this paper, we are interested in understanding the neural mechanism responsible for solving ICA. We present an online learning rule that exploits delayed correlations in the input. This rule performs ICA by detecting joint variations in the firing rates of pre- and postsynaptic neurons, similar to a local rate-based Hebbian learning rule.
Claudia Clopath, André Longtin, Wulfram Ger
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2007
Where NIPS
Authors Claudia Clopath, André Longtin, Wulfram Gerstner
Comments (0)