Sciweavers

AAAI
2006

Anytime Induction of Decision Trees: An Iterative Improvement Approach

14 years 26 days ago
Anytime Induction of Decision Trees: An Iterative Improvement Approach
Most existing decision tree inducers are very fast due to their greedy approach. In many real-life applications, however, we are willing to allocate more time to get better decision trees. Our recently introduced LSID3 contract anytime algorithm allows computation speed to be traded for better tree quality. As a contract algorithm, LSID3 must be allocated its resources a priori, which is not always possible. In this work, we present IIDT, a general framework for interruptible induction of decision trees that need not be allocated resources a priori. The core of our proposed framework is an iterative improvement algorithm that repeatedly selects a subtree whose reconstruction is expected to yield the highest marginal utility. The algorithm then rebuilds the subtree with a higher allocation of resources. IIDT can also be configured to receive training examples as they become available, and is thus appropriate for incremental learning tasks. Empirical evaluation with several hard concept...
Saher Esmeir, Shaul Markovitch
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2006
Where AAAI
Authors Saher Esmeir, Shaul Markovitch
Comments (0)