Sciweavers

AAAI
2006

Cost-Sensitive Test Strategies

14 years 2 months ago
Cost-Sensitive Test Strategies
In medical diagnosis doctors must often determine what medical tests (e.g., X-ray, blood tests) should be ordered for a patient to minimize the total cost of medical tests and misdiagnosis. In this paper, we design cost-sensitive machine learning algorithms to model this learning and diagnosis process. Medical tests are like attributes in machine learning whose values may be obtained at cost (attribute cost), and misdiagnoses are like misclassifications which may also incur a cost (misclassification cost). We first propose an improved decision tree learning algorithm that minimizes the sum of attribute costs and misclassification costs. Then we design several novel "test strategies" that may request to obtain values of unknown attributes at cost (similar to doctors' ordering of medical tests at cost) in order to minimize the total cost for test examples (new patients). We empirically evaluate and compare these test strategies, and show that they are effective and that t...
Shengli Sheng, Charles X. Ling, Ailing Ni, Shichao
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2006
Where AAAI
Authors Shengli Sheng, Charles X. Ling, Ailing Ni, Shichao Zhang
Comments (0)