Sciweavers

ACL
2006

Segment-Based Hidden Markov Models for Information Extraction

14 years 1 months ago
Segment-Based Hidden Markov Models for Information Extraction
Hidden Markov models (HMMs) are powerful statistical models that have found successful applications in Information Extraction (IE). In current approaches to applying HMMs to IE, an HMM is used to model text at the document level. This modelling might cause undesired redundancy in extraction in the sense that more than one filler is identified and extracted. We propose to use HMMs to model text at the segment level, in which the extraction process consists of two steps: a segment retrieval step followed by an extraction step. In order to retrieve extractionrelevant segments from documents, we introduce a method to use HMMs to model and retrieve segments. Our experimental results show that the resulting segment HMM IE system not only achieves near zero extraction redundancy, but also has better overall extraction performance than traditional document HMM IE systems.
Zhenmei Gu, Nick Cercone
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2006
Where ACL
Authors Zhenmei Gu, Nick Cercone
Comments (0)