Named Entity recognition (NER) is an important part of many natural language processing tasks. Current approaches often employ machine learning techniques and require supervised data. However, many languages lack such resources. This paper presents an (almost) unsupervised learning algorithm for automatic discovery of Named Entities (NEs) in a resource free language, given a bilingual corpora in which it is weakly temporally aligned with a resource rich language. NEs have similar time distributions across such corpora, and often some of the tokens in a multi-word NE are transliterated. We develop an algorithm that exploits both observations iteratively. The algorithm makes use of a new, frequency based, metric for time distributions and a resource free discriminative approach to transliteration. Seeded with a small number of transliteration pairs, our algorithm discovers multi-word NEs, and takes advantage of a dictionary (if one exists) to account for translated or partially translat...