The problem of model selection for support vector machines (SVMs) is considered. We propose an evolutionary approach to determine multiple SVM hyperparameters: The covariance matrix adaptation evolution strategy (CMA-ES) is used to determine the kernel from a parameterized kernel space and to control the regularization. Our method is applicable to optimize non-differentiable kernel functions and arbitrary model selection criteria. We demonstrate on benchmark datasets that the CMA-ES improves the results achieved by grid search already when applied to few hyperparameters. Further, we show that the CMA-ES is able to handle much more kernel parameters compared to grid-search and that tuning of the scaling and the rotation of Gaussian kernels can lead to better results in comparison to standard Gaussian kernels with a single bandwidth parameter. In particular, more flexibility of the kernel can reduce the number of support vectors. Key words: support vector machines, model selection, evol...