Many machine learning methods have recently been applied to natural language processing tasks. Among them, the Winnow algorithm has been argued to be particularly suitable for NLP problems, due to its robustness to irrelevant features. However in theory, Winnow may not converge for nonseparable data. To remedy this problem, a modification called regularized Winnow has been proposed. In this paper, we apply this new method to text chunking. We show that this method achieves state of the art performance with significantly less computation than previous approaches.