The regular occurrence of disfluencies is a distinguishing characteristic of spontaneous speech. Detecting and removing such disfluencies can substantially improve the usefulness of spontaneous speech transcripts. This paper presents a system that detects various types of disfluencies and other structural information with cues obtained from lexical and prosodic information sources. Specifically, combinations of decision trees and language models are used to predict sentence ends and interruption points and, given these events, transformationbased learning is used to detect edit disfluencies and conversational fillers. Results are reported on human and automatic transcripts of conversational telephone speech.
Joungbum Kim, Sarah E. Schwarm, Mari Ostendorf