In this paper, we first focus our attention on the question of how much space remains for performance improvement over current association rule mining algorithms. Our strategy is to compare their performance against an “Oracle algorithm” that knows in advance the identities of all frequent itemsets in the database and only needs to gather their actual supports to complete the mining process. Our experimental results show that current mining algorithms do not perform uniformly well with respect to the Oracle for all database characteristics and support thresholds. In many cases there is a substantial gap between the Oracle’s performance and that of the current mining algorithms. Second, we present a new mining algorithm, called ARMOR, that is constructed by making minimal changes to the Oracle algorithm. ARMOR consistently performs within a factor of two of the Oracle on both real and synthetic datasets over practical ranges of support specifications.
Vikram Pudi, Jayant R. Haritsa