Effective engineering of the Internet is predicated upon a detailed understanding of issues such as the large-scale structure of its underlying physical topology, the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function. Unfortunately, developing a deep understanding of these issues has proven to be a challenging task, since it in turn involves solving difficult problems such as mapping the actual topology, characterizing it, and developing models that capture its emergent behavior. Consequently, even though there are a number of topology models, it is an open question as to how representative the generated topologies they generate are of the actual Internet. Our goal is to produce a topology generation framework which improves the state of the art and is based on the design principles of representativeness, inclusiveness, and interoperability. Representativeness leads to synthetic topologies that accurately reflect m...