Bayesian Regularization and Nonnegative Deconvolution (BRAND) is proposed for estimating time delays of acoustic signals in reverberant environments. Sparsity of the nonnegative filter coefficients is enforced using an L1-norm regularization. A probabilistic generative model is used to simultaneously estimate the regularization parameters and filter coefficients from the signal data. Iterative update rules are derived under a Bayesian framework using the Expectation-Maximization procedure. The resulting time delay estimation algorithm is demonstrated on noisy acoustic data.
Yuanqing Lin, Daniel D. Lee