This paper presents a neuromorphic model of two olfactory signalprocessing primitives: chemotopic convergence of olfactory receptor neurons, and center on-off surround lateral inhibition in the olfactory bulb. A self-organizing model of receptor convergence onto glomeruli is used to generate a spatially organized map, an olfactory image. This map serves as input to a lattice of spiking neurons with lateral connections. The dynamics of this recurrent network transforms the initial olfactory image into a spatio-temporal pattern that evolves and stabilizes into odor- and intensity-coding attractors. The model is validated using experimental data from an array of temperature-modulated gas sensors. Our results are consistent with recent neurobiological findings on the antennal lobe of the honeybee and the locust.