This paper explores the computational consequences of simultaneous intrinsic and synaptic plasticity in individual model neurons. It proposes a new intrinsic plasticity mechanism for a continuous activation model neuron based on low order moments of the neuron's firing rate distribution. The goal of the intrinsic plasticity mechanism is to enforce a sparse distribution of the neuron's activity level. In conjunction with Hebbian learning at the neuron's synapses, the neuron is shown to discover sparse directions in the input.