Visual inspection of neurons suggests that dendritic orientation may be determined both by internal constraints (e.g. membrane tension) and by external vector fields (e.g. neurotrophic gradients). For example, basal dendrites of pyramidal cells appear nicely fan-out. This regular orientation is hard to justify completely with a general tendency to grow straight, given the zigzags observed experimentally. Instead, dendrites could (A) favor a fixed ("external") direction, or (B) repel from their own soma. To investigate these possibilities quantitatively, reconstructed hippocampal cells were subjected to Bayesian analysis. The statistical model combined linearly factors A and B, as well as the tendency to grow straight. For all morphological classes, B was found to be significantly positive and consistently greater than A. In addition, when dendrites were artificially re-oriented according to this model, the resulting structures closely resembled real morphologies. These resul...
Giorgio A. Ascoli, Alexei V. Samsonovich