PiQASso is a Question Answering system based on a combination of modern IR techniques and a series of semantic filters for selecting paragraphs containing a justifiable answer. Semantic filtering is based on several NLP tools, including a dependency-based parser, a POS tagger, a NE tagger and a lexical database. Semantic analysis of questions is performed in order to extract keywords used in retrieval queries and to detect the expected answer type. Semantic analysis of retrieved paragraphs includes checking the presence of entities of the expected answer type and extracting logical relations between words. A paragraph is considered to justify an answer if similar relations are present in the question. When no answer passes the filters, the process is repeated applying further levels of query expansions in order to increase recall. We discuss results and limitations of the current implementation.