Sciweavers

SODA
2004
ACM

Bipartite roots of graphs

14 years 25 days ago
Bipartite roots of graphs
Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only if their distance in H is at most k. Motwani and Sudan [1994] proved the NP-completeness of graph square recognition and conjectured that it is also NP-complete to recognize squares of bipartite graphs. The main result of this article is to show that squares of bipartite graphs can be recognized in polynomial time. In fact, we give a polynomial-time algorithm to count the number of different bipartite square roots of a graph, although this number could be exponential in the size of the input graph. By using the ideas developed, we are able to give a new and simpler linear-time algorithm to recognize squares of trees and a new algorithmic proof that tree square roots are unique up to isomorphism. Finally, we prove the NP-completeness of recognizing cubes of bipartite graphs. Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumeric...
Lap Chi Lau
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2004
Where SODA
Authors Lap Chi Lau
Comments (0)