We study algorithmic questions concerning a basic microeconomic congestion game in which there is a single provider that offers a service to a set of potential customers. Each customer has a particular demand of service and the behavior of the customers is determined by utility functions that are nonincreasing in the congestion. Customers decide whether to join or leave the service based on the experienced congestion and the offered prices. Following standard game theory, we assume each customer behaves in the most rational way. If the prices of service are fixed, then such a customer behavior leads to a pure, not necessarily unique Nash equilibrium among the customers. In order to evaluate marketing strategies, the service provider is interested in estimating its revenue under the best and worst customer equilibria. We study the complexity of this problem under different models of information available to the provider.