We propose a quasi-greedy algorithm for approximating the classical uncapacitated 2-level facility location problem (2-LFLP). Our algorithm, unlike the standard greedy algorithm, selects a sub-optimal candidate at each step. It also relates the minimization 2-LFLP problem, in an interesting way, to the maximization version of the single level facility location problem. Another feature of our algorithm is that it combines the technique of randomized rounding with that of dual fitting. This new approach enables us to approximate the metric 2-LFLP in polynomial time with a