Sciweavers

UAI
2004

Blind Construction of Optimal Nonlinear Recursive Predictors for Discrete Sequences

14 years 1 months ago
Blind Construction of Optimal Nonlinear Recursive Predictors for Discrete Sequences
We present a new method for nonlinear prediction of discrete random sequences under minimal structural assumptions. We give a mathematical construction for optimal predictors of such processes, in the form of hidden Markov models. We then describe an algorithm, CSSR (Causal-State Splitting Reconstruction), which approximates the ideal predictor from data. We discuss the reliability of CSSR, its data requirements, and its performance in simulations. Finally, we compare our approach to existing methods using variablelength Markov models and cross-validated hidden Markov models, and show theoretically and experimentally that our method delivers results superior to the former and at least comparable to the latter.
Cosma Rohilla Shalizi, Kristina Lisa Shalizi
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2004
Where UAI
Authors Cosma Rohilla Shalizi, Kristina Lisa Shalizi
Comments (0)