Sciweavers

WSC
2004

Retrospective Approximation Algorithms for the Multidimensional Stochastic Root-Finding Problem

14 years 2 months ago
Retrospective Approximation Algorithms for the Multidimensional Stochastic Root-Finding Problem
The stochastic root-finding problem (SRFP) is that of solving a system of q equations in q unknowns using only an oracle that provides estimates of the function values. This paper presents a family of algorithms to solve the multidimensional (q 1) SRFP, generalizing Chen and Schmeiser's onedimensional retrospective approximation (RA) family of algorithms. The fundamental idea used in the algorithms is to generate and solve, with increasing accuracy, a sequence of approximations to the SRFP. We focus on a specific member of the family, called the Bounding RA algorithm, which finds a sequence of polytopes that progressively decrease in size while approaching the solution. The algorithm converges almost surely and exhibits good practical performance with no user tuning of parameters, but no convergence proofs or numerical results are included here.
Raghu Pasupathy, Bruce W. Schmeiser
Added 31 Oct 2010
Updated 31 Oct 2010
Type Conference
Year 2004
Where WSC
Authors Raghu Pasupathy, Bruce W. Schmeiser
Comments (0)