In this work, we present a new semantic language modeling approach to model news stories in the Topic Detection and Tracking (TDT) task. In the new approach, we build a unigram language model for each semantic class in a news story. We also cast the link detection subtask of TDT as a two-class classification problem in which the features of each sample consist of the generative log-likelihood ratios from each semantic class. We then compute a linear discriminant classifier using the perceptron learning algorithm on the training set. Results on the test set show a marginal improvement over the unigram performance, but are not very encouraging on the whole.