Manually constructing an inventory of word senses has suffered from problems including high cost, arbitrary assignment of meaning to words, and mismatch to domains. To overcome these problems, we propose a method to assign word meaning from a bilingual comparable corpus and a bilingual dictionary. It clusters second-language translation equivalents of a first-language target word on the basis of their translingually aligned distribution patterns. Thus it produces a hierarchy of corpus-relevant meanings of the target word, each of which is defined with a set of translation equivalents. The effectiveness of the method has been demonstrated through an experiment using a comparable corpus consisting of Wall Street Journal and Nihon Keizai Shimbun corpora together with the EDR bilingual dictionary.