Awareness of the need for robustness in distributed systems increases as distributed systems become an integral part of day-to-day systems. Tolerating Byzantine faults and possessing self-stabilizing features are sensible and important requirements of distributed systems in general, and of a fundamental task such as clock synchronization in particular. There are efficient solutions for Byzantine non-stabilizing clock synchronization as well as for non-Byzantine self-stabilizing clock synchronization. In contrast, current Byzantine self-stabilizing clock synchronization algorithms have exponential convergence time and are thus impractical. We present a linear time Byzantine self-stabilizing clock synchronization algorithm, which thus makes this task feasible. Our deterministic clock synchronization algorithm is based on the observation that all clock synchronization algorithms require events for re-synchronizing the clock values. These events usually need to happen synchronously at the ...