We present a method for constructing, maintaining and consulting a database of proper nouns. We describe noun phrases composed of a proper noun and/or a description of a human occupation. They are formalized by finite state transducers (FST) and large coverage dictionaries and are applied to a corpus of newspapers. We take into account synonymy and hyperonymy. This first stage of our parsing procedure has a high degree of accuracy. Wc show how we can handle requests such as: 'Find all newspaper articles in a general corl)us mentioning the French prime minister', or 'How is Mr. X referred to in the corpus; what have been his different occupations through out the period over which our corpus extends?' In the first case, non trivial occurrences of noun phrases are located, that is phrases not containing words present in the request, but either synonyms, or proper nouns relevant to request. The results of the search is far better than than those obtained by a key-word ...