Ears are a new biometric with major advantage in that they appear to maintain their structure with increasing age. Expanding on our previous parts-based model, we propose a new wavelet approach. In this, the log-Gabor filter exploits the frequency content of the ear boundary curves. Extending our model description, a specific aim of the new approach is to capture information in the ear's outer structures. Ear biometrics is also concerned with the effects of partial occlusion, mostly by hair and earrings. By localization, intuitively a wavelet can offer performance advantage when handling occluded data. We also add a more robust matching strategy to restrict the influence of erroneous wavelet coefficients. Significant improvement is observed when we combine the model and the logGabor filter, and we will show that this improvement is maintained as the ears get occluded.