In this paper we report on a set of computational tools with (n)SGML pipeline data flow for uncovering internal structure in natural language texts. The main idea behind the workbench is the independence of the text representation and text analysis phases. At the representation phase the text is converted from a sequence of characters to features of interest by means of the annotation tools. At the analysis phase those features are used by statistics gathering and inference tools for finding significant correlations in the texts. The analysis tools are independent of particular assumptions about the nature of the feature-set and work on the abstract level of featureelements represented as SGMLitems.